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Numerical study of the coupled time-dependent Gross-Pitaevskii equation:
Application to Bose-Einstein condensation
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We present a numerical study of the coupled time-dependent Gross-Pitaevskii equation, which describes the
Bose-Einstein condensate of several types of trapped bosons at ultralow temperature with both attractive and
repulsive interatomic interactions. The same approach is used to study both stationary and time-evolution
problems. We consider up to four types of atoms in the study of stationary problems. We consider the
time-evolution problems where the frequencies of the traps or the atomic scattering lengths are suddenly
changed in a stable preformed condensate. We also study the effect of periodically varying these frequencies
or scattering lengths on a preformed condensate. These changes introduce oscillations in the condensate, which
are studied in detail. Good convergence is obtained in all cases studied.
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I. INTRODUCTION numerically in this paper. It is possible to have a distinct
trapping frequency for each of the components, one of which
The experimental detectidi] of Bose-Einstein conden- can be suddenly altered experimentdfly]. Of course, this
sation(BEC) at ultralow temperature in dilute bosonic atoms change would affect the component of the BEC directly
(alkali and hydrogen atomgmpmying magnetic traps have trappeq by this field. However, it is more interesting to StUdy
spurred intense theoretical activities on various aspects of theow this sudden change affects the other component of BEC
condensatd2—8]. Many properties of the condensate arenot directly trapped by this field. Also it is possible to sud-
usually described by the nonlinear mean-field Grossdenly vary[17] the atomic scattering length of one of the
Pitaevskii (GP) equation[7,9]. The GP equation in both SPecies and study its effect on the other component. The
time-dependent and independent forms is formally similar t bove variation of one of the trap frequencies or scattering

w P ; . engths can be carried through in a periodic fashion and its
the Schrdinger equation including a nonlinear tefGi4,6). §ffect on the other component can be studied. The studies

More recently, there has been experimental realization o . .

BEC involving two types of atom§10—12. In the actual menuoned .apove are pe_cullar to a coupled BEC and are of
: 87 . - B interest as it is now possible to vary both the trap frequencies

experiment™Rb atoms formed in thé =1, m=—1, and [16] as well as the scattering lengthg11,17 both abruptly
F=2, m=1 states by the use of a laser, served as tWQy iy 5 periodic fashion. These effects do not have any ana-
different species of atoms, wheFeandm are the total an-  |oq,e in the uncoupled BEC and we motivate the present
gular momentum and its projectigd1]. In another experi- jhyestigation with special emphasis on these effects in this
ment a coupled BEC was formed with tfiéRb atoms in the  paper. We investigate these time-evolution problems using a
F=1,m=-1,andF=2, m=2 state§7,12]. Experimen- set of two coupled GP equations in the purely repulsive case.
tally, it is possible to use the same magnetic trap to confingn addition we study the stationary solution to the coupled
the atoms in two quantum states, which makes this studgP equation describing a multicomponent condensate, where
easier technically compared to the formation of a BEC withwe consider up to four components.
two different types of atoms requiring two different trapping We solve the coupled BEC problem using the time-
mechanisms. It has also been found in these stydied2  dependent coupled GP equation in cases of attractive and
that the ®’Rb atoms have a repulsive interaction in all threerepulsive atomic interactions by discretization with the
states considered above. These experiments initiated theor&@rank-Nicholson-type rule complimented by the known
ical activities in multicomponent BEC described by the boundary conditions at origin and infinifiL5]. This proce-
coupled GP equatiofiL3]. dure leads to good convergence for both the stationary and

A numerical study of the time-dependent coupled GPtime-evolution problems.
equation is interesting as this can provide solution to many First we consider stationary coupled condensates under
time-evolution problems involving more than one type ofthe action of trap potentials. Stable and converged numerical
atoms forming a BEC. The solution of the coupled nonlinearesults are obtained for up to four coupled equations in the
GP equation is nontrivial14] and here we undertake the repulsive case and two in the attractive case. The time-
challenging task of the numerical study of these time-dependent GP equation is directly solved to obtain the full
evolution problemg5]. time-dependent solution in the case of stationary problems,

In a multicomponent BEC, the main feature is the cou-from which a trivial time-dependent phase factor is separated
pling between different types of condensates, which can leadnd the stationary solution obtained as in the uncoupled case
to new effects associated with this surely much richer situaf5].
tion nonexistent in a single-component BEC. We list some We also study the numerical stability of the calculational
interesting possibilities below, which we shall investigatescheme, which is more difficult to obtain when the nonlin-
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garity is Igrgg. For this purpose we only con_sider repulsive= \/7i/(mw), ande;(x,t) =xy;(r,7) (V2mwad ) Y2 In terms of
interatomic  interactions in the time-evolution problemsthese variables Eq2.2) becomes
where condensates with large nonlinearity can be formed. In

the case of attractive interaction a large nonlinearity leads to 2 M 5
the collapse of the condensd&. _ ‘9_+ —c-x2+2 n. [ 41X —ii bi(x,H)=0
; i il A, )
In Sec. Il we present the coupled time-dependent GP 2 4 =1 X2 at
equation that we use. In Sec. Ill we describe the numerical (2.3

method in some detail. In Sec. IV we report the numerical

results for the stat_ionary case andin Sec. V we report a studyheren; =22N,a; /ay, is the reduced number of particles
of three typeS of time-evolution pl’OblemS. F|na”y, in Sec. Vand this humber could be negati(msitive when the cor-

we give a summary of our investigation. responding scattering length is negatipesitive), represent-
ing an attractivérepulsive interatomic interaction. The nor-
Il. NONLINEAR COUPLED GROSS-PITAEVSKII malization of the wave function ifg| #;(x,t)|°dx=1 and its
EQUATION root-mean-squar@ms) radiusx{) is given by

The GP equatiof9] for a coupled trapped Bose-Einstein

condensate at zero temperature is writtef 183 Xgmsz

172
(2.9

f 32 i) dx
0

#2 M

1
— =—V2+ S cmo?r?+ AN W (r,7) |2
2m 2@ Elg" (el IIl. NUMERICAL METHOD

To solve Eq.(2.3) numerically one needs the proper
vi(r,7)=0,... M, (2.1)  boundary conditions at—0 ande. For a confined conden-
sate, for a sufficiently large,  ¢;(x,t) must vanish asymp-

. ) i _ totically. Hence the nonlinear term proportional| th (x,t)[3
whereW;(r, ) at positionr and timer is the wave function  can eventually be neglected in the GP equation for large
for the component of the condensatan is the mass of @ consequently the asymptotic form of the physically accept-
single bosonic atom, the number of condensed atoms of gpje solution is given by lim...|i(x,t)|~exp(x3/4).
typel, M the number of types of atoms;mw?r®/2 the  Next we consider Eq(2.3 as x—0. The nonlinear term
attractive harmonic-oscillator trap potential, andhe oscil-  approaches a constant in this limit because of the regularity
lator frequency. The parametey has been introduced t0 of the wave function ak=0. Then one has the condition
independently modify the frequency of the harmonic—|¢i(0’t)| =0.

OSC”'atZOV trap for each type of atoms. Herg; A convenient way to solve E¢2.3) numerically is to
=4mha; /mis the coupling constant for elastic interaction gjscretize it in both space and time and reduce it to a set of
between atoms of typésandl|, wherea;, is the correspond-  g|gebraic equations, which could then be solved by using the
ing scattering length. The masses of different types of atomgnown asymptotic boundary conditions. The procedure is
are taken to be equal, as this is necessary while consideringmilar to that in the uncoupled caf]. We discretize Eq.
the coupled BEC formed of different spin states of (2 3) py using a space stépand time stepA with a finite
8’Rb—one of the most important realizations to date. In thisifference scheme using the unknowe X, which will be
paper we shall not allow the transition of one type of atomsapproximation of the exact solutior;bi(xp 1), where x
of the BEC to the other and take the number of atoms of each. y ) andt,=kA. The time derivative in qu(2_3) involves
component to be constant as in the experiment of R&.  yhe \yave function at time, andt,, ;. As in the uncoupled
Here we shall be interested in the spherically symmetriG.5qe e express the wave functions and their derivatives in
solutionW;(r,7)=;(r,7) to Eq.(2.1), which can be written Eq. (2.3 in terms of the average over timgsandt, . ; [15]
as and the resultant scheme leads to accurate results and good
convergence. In practice we use the following Crank-

i d
_I —
or

h? 1 &2 M Nicholson-type schemd 5] to discretize the partial differen-
2.2 2
Tomr g T plimeT + 2, 9uNilvn(r, )] tial equation(2.3)
3 ()5 = ()
—ih—|yi(r,7)=0,... M. (2.2) j—r P A ' p=—ﬁ (BT I—2(d)E T+ (KT
k k k
The above limitation to the spherically symmetric solution T(Pi)pr1—2(dh)pH(di)p-1l
(in the zero angular momentum stateduces the coupled 2 M K2
GP equation to a one-dimensional coupled partial differential E %JFE n |(¢|)p|
equation. 2l 4 T )(’2J
As in Refs.[4,5] it is convenient to use dimensionless 1 i}
variables defined by=\/2r/a,,, andt=7w, where ay, X[(Pi)p ~+ (i)l 3.9
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Considering that the wave-function componedts are L
known at timet,, Eqg. (3.1) is an equation in the
unknowns—;) 511, (#)5 ", and (@) 1. In a lattice ofN 2.0
points, Eq. (3.1) represents a tridiagonal set fop
=2,3,...,0N—1) for a specific componen; . This set has
a unique solution if the wave functions at the two end points 1.5
(#)5  and (@)K * are known[15]. In the present problem
these values at the end points are provided by the known
asymptotic conditions. < 1.0

To find the ground state of the condensate we start with
the analytically known properly normalized wave functions
of the uncoupled harmonic-oscillator problems described by
Eqg. (2.3) with n;;=0. We then repeatedly propagate these
solutions in time using the Crank-Nicholson-type algorithm 0.0
(3.1). Starting withn; =0, at each time step we increase or 0
decrease the nonlinear parametgrby an amount\,. This X
procedure is continued until the desired final valuengfis
reached. The resulting solution is the ground state of th
condensate corresponding to the specific nonlinearity. S5, Ci=1, C,=0.25: (b) Ny=Nyp=5, NypeNpr—100

The time-dependent approach is the most suitable foy = ' _ b 2 == 0 AL 22 7 a2 T2 ;
solving time-evolution problems. In the present paper weElzi’ C(Zlcu?éf;’j aqtdhf):ré%snazﬁdio’:g%l r(]fzuln I?r;e();'l Alz,oagg

) X . 2 . 1=0. ; .
consider only evolution problems starting from a stable con 4 A,=0.015 (dashed ling In case(c) only the results forA;
densate at=0. In these cases the stationary problem is—g o1 are shown.
solved first and the wave function so obtained serves as the
starting wave function for the time-evolution problem.

I‘Illllllll

!
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S
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FIG. 1. Wave-function components; (label 1) and ¢, (label
3) for two coupled GP equations witke) nj;=n,=10, n;,

ajy—1y/a;,1,=1.062[11]. If we label the|1,—1) state by 1
and the|2,1) state by 2, and considesi;1/an,=as,/an,
=0.002, thenn;;=n,,=10 corresponds tdN;=N,=1770.

First we consider the stationary ground-state solution off his estimate gives an idea of the actual experimental con-
Eq. (2.3 in cases of both attractive and repulsive interactionglition that the present set of parameters simulate. The three
using two and four coupled equations. The numerical inteinodels considered above can simulate actual experimental
gration was performed up .= 15 with h=0.0001 using  situations composed of two states®Rb. The different val-
time stepA=0.05 and the parametér;=0.01. After some ues ofn;, andn,; considered above correspond to different
experimentation we find that good convergence is obtainegossible unknown repulsive interactions among the two spe-
with parametersA and A; near these values. The conver- cies of condensates. It is realized from the coupled GP equa-
gence is fast for small nonlinearity. The final convergence otion that in case of moddk), ¢;= ¢,. We show results for
the scheme breaks down if nonlinearity is too large. In practhe two components of the wave function for two sets of
tice these difficulties start far; >20 for the ground state for yajyes ofA;:0.01 (full line) and 0.015(dashed lingin Fig.

a repulsive interaction in a computational analysis in double] The gifference between the two sets of results increases as
p_recision. For an att'ractive interact.ion the coupled GP equap,e nonlinearity of the GP equation given hy increases,
tion does not sustain a large nonlinearfity;| and leads to e.g., for the caséb) above compared (). The difference

collapse. _Exc_ept for value_s of nonlinearity near collapse, th?educes to zero as the nonlinearity decreases.
GP equation in the attractive case leads to good convergence. Next we consider the more complicated case of four

coupled GP equations with repulsive atomic interaction. This
A. Repulsive atomic interaction is a purely theoretical case with no experimental analogue, as

In most of the experimental realization of BEC in trapped@ll experiments to date are limited to two coupled conden-
atoms, the interatomic interaction is repulsive and we consates only. In this case the numerical method works in the
sider this case first. We consider the simple case of twgame fashion and good convergence is obtained with moder-
coupled GP equations in the case of repulsive interactioate values of nonlinearity. Again we consider the case of
with (@) n;;=n»=10, n;,=n,;=5, ¢c;=1, andc,=0.25, repulsive interaction between all possible pairs. In this case,
(b) ny;=n5,=5, n;,=n,;=100, c;=1, andc,=0.25, and in the four-component model, we takg;=4, n,,=5, N33
(¢) n;1=ny,=10, ny,=n,;=5, andc,=c,=1. In this case =6, ny,=8, andn; =2i#1; c;=4, c,=1, c3=4, andc,
all interactions are repulsive corresponding to the positive=0.25. The solution for the wave-function components ob-
sign of all n;=2+2N;a; /a;,. Although these parameters tained with A=0.05 and A;=0.01 (full line), and A,
are in dimensionless units, it is easy to associate them0.015 (dashed ling are shown in Fig. 2. The maximum
to an actual physical problem of experimental interestdifference between the two calculations is about 6% for the
For example, for the mixture offF=1m=-—1) and largest componentd;) nearx=0, although the average dif-
[F=2m=1) 8RDb states, the ratio of scattering lengthsference is much smaller, as can be seen in Fig. 2.

IV. RESULTS FOR THE STATIONARY PROBLEM
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FIG. 3. Wave-function components; (label 1) and ¢, (label
2) for two coupled GP equations witf@) n,;=—1, ny=—1.5,
n;,=n,=4, c;=4, and c,=1 (dashed-dotted line (b) ny;=
-1, ny,=-1.5,n,,=n,,=80, c;=4, andc,=1 (dashed ling (c)
n11= - 1, n22: - 15, n12: nz]_: 100, 01:4, andC2: 1 (fU“ “ne)
calculated withA=0.05 andA,=0.01.

FIG. 2. Wave-function component, (label 1, ¢, (label 2,
¢4 (label 3, and ¢, (label 4 for four coupled GP equations with
n;1=4, Ny,,=5, nyz=6, Nyu==8, andn;=2j+#l; c,=4, c,=1,
c;=4, andc,=0.25 calculated withA =0.05 andA;=0.01 (full
line); A=0.05 andA;=0.015(dashed ling

B. Attractive atomic interaction . . .
nonlinear couplings,, and n,; are increased as we move

The case of attractive atomic interaction demands specidtom case(a) to (b) and then tac). Other parameters of the
attention as one can have the phenomenon of collapse in thisodel are kept fixed. Because of the attractive interactions in
case. We consider the case of two coupled GP equations withis case, the system moves towards collapse as we move
attractive interactions between like atoriis i=1,2, and from case(a) to (c) through(b). The central density corre-
with repulsive interactions between unlike atoms i #]j. sponding to¢, increasegeventually tends to infinityand
In this case some of the atomic interactions are attractive ithe rms radius of the system decreagagentually tends to
nature. Consequently, with largattractive nonlinearity, the  zerg with the increase of nonlinearity. This is clear from a
system may undergo collapse and for stable stationary soliwomparison of Fig. 3 with Figs. 1 and 2. The very large
tion of the GP equation, the nonlinearity should be main-central value of the wave functio#, (~35) and its small
tained small. We consider the following three cagesn;;  radial extension, indicates a large central density and a small
=—1, ny,=—1.5,n;,=n,=4, ¢c;=4, andc,=1; (b) ny;  rms radius.
=—1, nyp=—15, n;,=n,,=80, ¢c;=4, andc,=1; (¢ Finally, we consider the case of two interacting systems
n;;=—1, ny,,=—1.5, n;,=n,=100, c;=4, andc,=1.  with all interactions repulsive. In this case the system is more
The only observed case of BEC with attractive interaction isvulnerable to collapse if the nonlinearity is large. We con-
the case of’Li with a/an,=—0.0005[7]. If we label this sider the following three sets of parameters in this case for
state by 1 them,;=—1 corresponds to the actual particle which we show the solution in Fig. 4a) n;;=—1, ny=
numberN;=700. In an uncoupled condensate dfi the -1, nyp,=n,=-0.4, ¢c;=4, andc,=0.25; (b) n;;=—1,
BEC collapses for more than 1400 atoms. Although there has,,= -1, n;,=n,;=—0.5, c;=4, andc,=0.25; (c) ny;=
been no experimental realization of coupled BEC in the case-1, n,,=—1, n;,=n,=—0.55, ¢;=4, and c,=0.25.
of attractive interaction, the parameters cited above majhese parameters simulate the possible coupled BEC com-
simulate the BEC of ground-state atoms ‘@fi coupled to  posed of the attractive ground and excited states’ldf
one of its excited states, where the atomic interaction is alswhere the interaction between a ground- and an excited-state
attractive. If we assume that the excited-state atoms have thatom is also taken to be attractive. It is possible to calculate
same value of/a;, as in the ground state them,=—1.5 the number of the two types of atoms as in the discussion
corresponds to the number of atoig= 1500 in the excited related to Fig. 3. Here the nonlinearity increases as we move
state where the excited state is labeled by the index 2. from case(a) to (b) and then to(c), and consequently, the

The wave-function components in this case are shown inmvave-function components become more and more localized
Fig. 3. As for a stable stationary solution the nonlinearity inwith a large central density and small rms radii signaling the
this case has to be smaller than in the purely repulsive casenset of collapse of the system. This is clear from Fig. 4. In
numerically it is easier to obtain precise solution except forcase(c) the nonlinearity is the highest and one is closer to
values of the nonlinearity close t@nd beyond collapse. collapse. However, there is a difference between the two
The parameters above in cagas (b), and(c) are chosen to collapses shown in Figs. 3 and 4. In Fig. 3 the route to
illustrate the collapse of the system arising from the diver<ollapse is manifested through a singular behavior of com-
gence of the first component of the wave functi@i Y. The  ponent¢, of the wave function; in Fig. 4, both components
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30 — T — T T both of these parameters are employed and can really be
large if an improper value of stef or A; is chosen. This
oscillation is quite similar to that in the uncoupled case stud-
ied in detail in Ref[5].

From Figs. 1 and 2 we find that the error in the wave-
function component ¢;(x,t)/x| as a function ofx is the
largest atx=0. In Table | we show the percentage error
of lim,_o|#i(x,0)/x|, defined by &E=10q]|¢;(0t)]
—|i(0,0)|1/| ¢i(0,0)| at those iterations where this error is
maximum. For illustration we consider the modéds dis-
cussed in Figs. 1 and 4. At positivethere is overshooting
and at negative there is undershooting. Between a positive
& and a negative there is a zero of denoting zero error.
We find that the wave functions oscillate with time around
the stationary solution. The maximum reported error is about
6%. Considering that we are dealing with coupled nonlinear
equations these errors are well within the acceptable limit.
2) for two coupled GP equations witla) ny;= — 1, Nyy=—1, Ny, _The_ errors sht_)wn in Table | vyould also be the t_ypica_l errors
=ny=—0.4, c,=4, andc,=0.25 (dashed-dotted line (b) ny;= in tlme—ev.olut|on problems with the same nonllnearlty that
—1, nypy=—1, nyp=ny=—-05, c;=4, and c,=0.25 (dashed We study in Sec. V. From Table | we see that the period of
line); (€) Nyy=—1, Ny=—1, nyp=ny=—0.55 c,=4, andc, Ooscillation of the result varies from one case to another.
=0.25 (full line) calculated withA =0.05 andA;=0.01. However, the error increases as the nonlinearity increases or

as the system approaches collapse in the case of attractive
¢, and ¢, exhibit the singular behavior. The spacial exten-interaction. For example, in models) of Figs. 3 and 4,
sion of the wave-function components close to collapse iwhich are close to collapse corresponding to almost maxi-
Figs. 3 and 4 is much smaller than the wave-function commum permissible nonlinearity, the error increases quickly
ponents in the purely repulsive cases shown in Figs. 1 and avith time iteration and a large numerical error could be gen-
erated easily.

(I)i(x) /x

FIG. 4. Wave-function components; (label 1) and ¢, (label

C. Estimate of numerical error

. . L . V. RESULTS FOR THE TIME-EVOLUTION PROBLEM
It is appropriate to comment quantitatively on the numeri-

cal accuracy of the present method. If we iterate the final Now we consider three types of time-evolution problems,
solution in time without changing the nonlinearity, the nu- some of which could possibly be studied experimentally. As
merical result keeps on oscillating with a small amplitudethe repulsive case leads to more stable configuration of the
around the converged value. This oscillation gives a goo¢ondensate, in this paper we consider only this case in the
estimate of the numerical error of the method. This erroprocess of time evolution. The attractive case of coupled
manifests in a different way in Fig. 1, where we have variedBEC is also very interesting from a physical point of view
A ;. The numerical solution of the time-dependent method ishecause of the occurrence of collapse. We have performed a
independent of the space steprovided that a typical value study of the dynamics of collapse in coupled BEC using the
aroundh=0.0001 is employed as in the present paper. Ngresent numerical method, which will be reported elsewhere.
visible difference in the solution is foundlifis increased by The two types of parameters that can be varied in the time-
a factor of 2. However, the above oscillations with time it- evolution study are the frequencies of the harmonic-
eration are sensitive to the parametarandA,. The values oscillator traps and the different scattering lengths. Recently,
of these parameters\(0.05 andA;=0.01) are chosen to it has been possible to vary the scattering length experimen-
minimize the oscillation of the results with time iterations. tally by varying an external fielfil1,12. It is also possible
The oscillation increases if larger or smaller values of one oto vary the trap frequency by varying the currents in the

TABLE I. Percentage errof=100 | ¢;(0,T)|—|¢i(0,0)|1/| #:(0,0)| of |#;(0,T)| (i=1,2) at successive reduced tiniEs0.05, where
this error is maximum, calculated with=0.05 andA,=0.01. The cases considered correspond to m@eaf Figs. 1 and 4.

Fig.1 T 0 19 42 67 101 125 165 190 225 249 271 311 337 371 395 414 458 483
$(@) £ 0 —17 25 -10 35 -14 32 -19 29 -27 21 -32 40 —-21 42 -18 54 -3.7
Fig.1 T O 36 8 163 219 275 353 395 477

da) £ 0 54 —49 62 —-42 55 —42 62 —4.6

Fig.4 T 0 13 110 192 250 318 376 467

é(a) € 0 12 -06 10 -05 1.0 -0.3 09

Fig.4 T 0 27 113 183 245 323 386 462

@) £ 0 31 -27 32 -25 32 -17 31
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FIG. 5. The rms radii of the two components (full line) and ¢, (dashed ling of the wave function at different reduced timés
=1/0.05 for the oscillating condensate, when on the preformed condensate of (@aafdFig. 1, we suddenly inflict the following changes:
(@ ¢;=0.25 andc,=1; (b) c;=c,=1; (C) N;3=Nn»»,=5; Ny;=n4,=100; and(d) c,=0 calculated withA =0.05 andA,=0.01. All other
parameters are maintained unchanged.

magnets responsible for confinem¢gheé]. well as the atomic interactior(scattering lengthq17]. First

In the first type of problems we consider a sudden changeve consider a sudden change of both the trap frequencies on
of the harmonic-oscillator frequencies or scattering lengths ahe preformed coupled stationary BEC state corresponding to
t=0 and study its effect on a preformed condensate. In the,oge| (a) of Fig. 1. We set the reduced tine=1t/0.05=0
second type we study the effect of a periodic temporal variag han we start the time evolution. As the time stejis 0.05,

tion of these frequencies on a pr'eformed conde_nsate. Finall)f, is just the number of iterations. In this model we have two
we study the effect of a periodic temporal variation of the '

scattering lengths on the preformed condensate. In all caséjéfferent trap frequencies fo.r the two components given by
we take the preformed condensate as the one described fy=1 @andc;=0.25. In the first case af=0 we suddenly
the model(a) of Fig. 1. We have commented before that theinterchange the constantg andc,, i.e., we set;=0.25 and
parameters of this model can simulate the coupled BEC cont,=1 and study the time evolution. The evolution of the rms
posed of the ground and an excited state®@b, which  radii corresponding tap, and ¢, are shown in Fig. &).
gives a motivation for this choice. When we implement theseBoth rms radii execute oscillations. However, that corre-
time-dependent perturbations, the system starts to oscillatponding to¢, has a much larger amplitude. The periods of
(grow and shrink with time. The corresponding evolution oscillation of the two radii are different.
can be studied best through the rms radii which execute Next we consider a sudden change in one of the trap
periodic oscillation with time. frequencies on the preformed condensateTatO corre-
sponding to modefa) of Fig. 1 withc,;=1 andc,=0.25. At
T=0, we sett;=c,=1, which corresponds to parameters of
By varying the external fields it is possible to vary the model(c) of Fig. 1. The evolution of the rms radii is shown
harmonic-oscillator trap frequency of the confining trap asin Fig. 5b). Although in the stationary configuration of

A. Sudden change of trap frequency or scattering length
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model(c) of Fig. 1, ¢1= ¢, this condition is never attained 4 — T T T T
in this evolution problem. The system keeps on oscillating - §
indefinitely with time. The oscillation shown in Figs(eh
and §b) has nothing to do with the nonlinear or coupled
nature of the problem. Similar oscillation also appears in an
uncoupled linear oscillator when the trap frequency is sud-
denly changed. In the present coupled nonlinear problem
both rms radii execute oscillations with time. However,
when the amplitude of oscillation of one of the components
increases, that of the other decreases. This behavior denotes
the transfer of kinetic energy from one component to the
other.

Now we study the effect of a sudden change of the scat- L _
tering lengtlis) on the preformed condensdtE7]. We con- PR IS Y NI I

sider the problem when the parameters of madeof Fig. 1 0 100 200 300 400 500

are suddenly changed to those of mo@®l of Fig. 1 atT T

=0. This is achieved by changing the nonlinearities sud- B

denly atT=0 from ny;=nNyy=100115=N=5 t0 Ny;= Ny FIG. 6. The rms radii of the two components (full line) and

t ¢, (dashed ling of the wave function at different reduced times
T=t/0.05 for the oscillating condensate, when on the preformed
condensate of modéd) of Fig. 1, we suddenly inflict the following

=5n,,=n,,=100 with a variation of the external field tha

controls the scattering lend#). In this case the oscillations

of the system are shown in Fig(®, where we plot the time e ; A

evolution of the rms radii of the two components. Both com-c_hange'cl_1_0'5 Sinr1/20) Calcu".ateq withA=0.05 anda,

s . ..=0.01. All other parameters are maintained unchanged.

ponents of the condensate execute oscillations but with dif-

ferent frequencies and amplitudes. One of the components

execute giant oscillations with large amplitude, whereas th@re directly varying the first frequency in this case. The rms

amplitude of the other is much smaller. radius of the second wave function feels the effect through
Finally, we consider the case when one of the trappingts coupling to the first component. We also varied both the

potentials is switched off af=0 on the preformed conden- parametersc; and c, in a periodic fashion, which corre-

sate of Fig. 1, modela) by settingc,=0. The oscillation in  sponds to varying both the frequencies. In this case both the

this case is shown in Fig.(8), where we plot the two rms rms radii execute oscillation. However, no interesting effect

radii. In the absence of the trapping potential the seconds observed and we do not show the details of that oscillation

component of the condensate can no longer remain localizelikere.

in space. However, it does not expand monotonically before

evaporating. It starts to execute giant oscillation and eventu- C. Periodic oscillation of scattering length

ally escapes to infinity. Similar oscillation was found in the

case of an uncoupled BEC when the trapping potential Wagcelx\tlt?a Vr\znwelef]tun?sx)/ ;?teh:fsfeg:e(r)r]: c?n%en?e(?‘lc():rézgaég)nn d::lstgtee
removed[5]. The first component essentially remains un- gleng y P '

changed during the process under the action of the u In our formulation this corresponds to a periodic variation of

changed trap potential. The minor oscillation of the rms radii he parameters; . This variation of the atomic inferactions

of the first component is due to the coupling to the expandin réhe SC?(;te”[‘hg Ieng.ths_ IS noyvtfeas_|ble eXpi”t?en[an' .
second component, consider the periodic variation in one of the scattering

lengths @,,) by settingn;;=1—0.5sin¢T/20) for T=0 on
the preformed condensate of moda) of Fig. 1. The result-
ant oscillation of the rms radii are shown in Fig. 7. This
Instead of making a sudden change in the parameters ofariation corresponds to a variation of the atomic interaction
the model, next we introduce periodic oscillation in some ofamong atomic states of the first type. Consequently, the rms
the parameters of the model fd=0 and study the conse- radii of the first component of the BEC executes pronounced
guence on the system. We introduce a periodic variation imscillation with moderate amplitude. There is no direct varia-
the parametersc;, which are related to the harmonic- tion in the parameters of the second component. The second
oscillator trap frequencies. Experimentally, this variation iscomponent of the condensate feels the effect of variation of
possible via a variation of the external fields, which are conn,, through the coupling to the first component. Because of
trolled by currents. this secondary effect the second component also executes
We again consider af=0 the preformed condensate of oscillation as can be seen from its rms radii in Fig. 7, albeit
the model(a) of Fig. 1. First we consider the variatiosy  with a much smaller amplitude compared to the first compo-
=1-0.5sinGT/20), which corresponds to varying the fre- nent.
quency of the first trap. The resultant variation of the two We also considered a periodic variation of the scattering
rms radii are shown in Fig. 6. The first radigill line) length between one atom of each tyg £a,;) by setting
oscillates more rapidly with larger amplitude and frequencyn;,=n,;=0.5—0.25 singrT/20) on the same preformed con-
than the second radigdashed ling This is reasonable as we densate foiT=0 and studied the resultant oscillation of the

B. Periodic oscillation of trap frequency
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4 — T T T T T T This method leads to good convergence for small nonlinear-
ity. Numerical difficulty appears for large nonlinearity;(
>20). For medium nonlinearity, the accuracy of the method
s~ _~N . can be increased by reducing the space ktep
- 2 NS The ground-state stationary wave functions are found to
be sharply peaked near the origin for attractive interatomic
interaction for larger nonlinearityFig. 4). For a repulsive
interatomic interaction the wave function extends over a
J larger region of spacéFigs. 1 and 2 In the case of an
attractive potential, the rms radii decrease with an increase of
nonlinearity. There could be a collapse for attractive interac-
tion when the nonlinear parameterg are increased as in the
uncoupled casg8]. In the purely repulsive case we solved
ol two and four coupled GP equations. In problems in.volving
0 100 200 300 400 500 attractlon.v_ve solved only 'the two coupled GP equgtlons.
T In addition to the stationary problem we studied three
types of evolution problems. A stable coupled condensate is
FIG. 7. The rms radii of the two componentg (full line) and  considered alT =0 on which a time-dependent perturbation
¢, (dashed ling of the wave function at different reduced times s introduced. Two types of perturbations were considered on
T=t/0.05 for the OSCi”ating Condensate, when on the preforme(h two_Component condensate with pure|y repu|sive interac-
condensate of modedi_) of Fig. 1, we suddenly inflict the following  tions. In the first type a sudden change in the parameters
change:ny;=1-0.5sin(rT/20) calculated withA=0.05 andA;  yg|ated to the frequencies of the trap and the scattering
=0.01. All other parameters are maintained unchanged. lengths was introduced. In the second type a periodic varia-
ion of the different scattering lengths and the frequencies of
he harmonic-oscillator trap was introduced. In all cases the
condensates execute periodic oscillation, which is studied via
the time evolution of the rms radii as in the uncoupled case
VI. SUMMARY [7]. We conclude that the present time-dependent approach is

In this paper we present a numerical study of the coupledf€ry suitable for studying both the stationary and time-
time-dependent Gross-Pitaevskii equation for BEC in thre€Volution problems of a coupled BEC.
space dimensions under the action of harmonic-oscillator
trap p_otentials with a_ttractive and repulsive interparticle in- ACKNOWLEDGMENTS
teractions between different types of atofi§].

The time-dependent coupled GP equation is solved by This work was supported in part by the CNPg and
discretizing it using a Crank-Nicholson-type schefagl5). FAPESP of Brazil.
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rms radii. However, no interesting behavior was observe
and we do not show details of that oscillation.
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