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Numerical study of the coupled time-dependent Gross-Pitaevskii equation:
Application to Bose-Einstein condensation

Sadhan K. Adhikari
Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, 01.405-900 Sa˜o Paulo, Sa˜o Paulo, Brazil

~Received 20 June 2000; published 20 April 2001!

We present a numerical study of the coupled time-dependent Gross-Pitaevskii equation, which describes the
Bose-Einstein condensate of several types of trapped bosons at ultralow temperature with both attractive and
repulsive interatomic interactions. The same approach is used to study both stationary and time-evolution
problems. We consider up to four types of atoms in the study of stationary problems. We consider the
time-evolution problems where the frequencies of the traps or the atomic scattering lengths are suddenly
changed in a stable preformed condensate. We also study the effect of periodically varying these frequencies
or scattering lengths on a preformed condensate. These changes introduce oscillations in the condensate, which
are studied in detail. Good convergence is obtained in all cases studied.

DOI: 10.1103/PhysRevE.63.056704 PACS number~s!: 02.70.2c, 02.60.Lj, 03.75.Fi
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I. INTRODUCTION

The experimental detection@1# of Bose-Einstein conden
sation~BEC! at ultralow temperature in dilute bosonic atom
~alkali and hydrogen atoms! employing magnetic traps hav
spurred intense theoretical activities on various aspects o
condensate@2–8#. Many properties of the condensate a
usually described by the nonlinear mean-field Gro
Pitaevskii ~GP! equation @7,9#. The GP equation in both
time-dependent and independent forms is formally simila
the Schro¨dinger equation including a nonlinear term@3,4,6#.

More recently, there has been experimental realization
BEC involving two types of atoms@10–12#. In the actual
experiment87Rb atoms formed in theF51, m521, and
F52, m51 states by the use of a laser, served as
different species of atoms, whereF and m are the total an-
gular momentum and its projection@11#. In another experi-
ment a coupled BEC was formed with the87Rb atoms in the
F51, m521, andF52, m52 states@7,12#. Experimen-
tally, it is possible to use the same magnetic trap to con
the atoms in two quantum states, which makes this st
easier technically compared to the formation of a BEC w
two different types of atoms requiring two different trappin
mechanisms. It has also been found in these studies@11,12#
that the 87Rb atoms have a repulsive interaction in all thr
states considered above. These experiments initiated the
ical activities in multicomponent BEC described by t
coupled GP equation@13#.

A numerical study of the time-dependent coupled G
equation is interesting as this can provide solution to m
time-evolution problems involving more than one type
atoms forming a BEC. The solution of the coupled nonline
GP equation is nontrivial@14# and here we undertake th
challenging task of the numerical study of these tim
evolution problems@5#.

In a multicomponent BEC, the main feature is the co
pling between different types of condensates, which can l
to new effects associated with this surely much richer sit
tion nonexistent in a single-component BEC. We list so
interesting possibilities below, which we shall investiga
1063-651X/2001/63~5!/056704~9!/$20.00 63 0567
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numerically in this paper. It is possible to have a distin
trapping frequency for each of the components, one of wh
can be suddenly altered experimentally@16#. Of course, this
change would affect the component of the BEC direc
trapped by this field. However, it is more interesting to stu
how this sudden change affects the other component of B
not directly trapped by this field. Also it is possible to su
denly vary @17# the atomic scattering length of one of th
species and study its effect on the other component.
above variation of one of the trap frequencies or scatter
lengths can be carried through in a periodic fashion and
effect on the other component can be studied. The stu
mentioned above are peculiar to a coupled BEC and ar
interest as it is now possible to vary both the trap frequenc
@16# as well as the scattering lengths@7,11,17# both abruptly
or in a periodic fashion. These effects do not have any a
logue in the uncoupled BEC and we motivate the pres
investigation with special emphasis on these effects in
paper. We investigate these time-evolution problems usin
set of two coupled GP equations in the purely repulsive ca
In addition we study the stationary solution to the coup
GP equation describing a multicomponent condensate, w
we consider up to four components.

We solve the coupled BEC problem using the tim
dependent coupled GP equation in cases of attractive
repulsive atomic interactions by discretization with t
Crank-Nicholson-type rule complimented by the know
boundary conditions at origin and infinity@15#. This proce-
dure leads to good convergence for both the stationary
time-evolution problems.

First we consider stationary coupled condensates un
the action of trap potentials. Stable and converged numer
results are obtained for up to four coupled equations in
repulsive case and two in the attractive case. The tim
dependent GP equation is directly solved to obtain the
time-dependent solution in the case of stationary proble
from which a trivial time-dependent phase factor is separa
and the stationary solution obtained as in the uncoupled c
@5#.

We also study the numerical stability of the calculation
scheme, which is more difficult to obtain when the nonli
©2001 The American Physical Society04-1
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earity is large. For this purpose we only consider repuls
interatomic interactions in the time-evolution problem
where condensates with large nonlinearity can be formed
the case of attractive interaction a large nonlinearity lead
the collapse of the condensate@8#.

In Sec. II we present the coupled time-dependent
equation that we use. In Sec. III we describe the numer
method in some detail. In Sec. IV we report the numeri
results for the stationary case and in Sec. V we report a s
of three types of time-evolution problems. Finally, in Sec.
we give a summary of our investigation.

II. NONLINEAR COUPLED GROSS-PITAEVSKII
EQUATION

The GP equation@9# for a coupled trapped Bose-Einste
condensate at zero temperature is written as@13#

F2
\2

2m
¹21

1

2
cimv2r 21(

l 51

M

gil Nl uC l~r ,t!u2

2 i\
]

]tGC i~r ,t!50, . . . ,M , ~2.1!

whereC i(r ,t) at positionr and timet is the wave function
for the componenti of the condensate,m is the mass of a
single bosonic atom,Nl the number of condensed atoms
type l , M the number of types of atoms,cimv2r 2/2 the
attractive harmonic-oscillator trap potential, andv the oscil-
lator frequency. The parameterci has been introduced t
independently modify the frequency of the harmon
oscillator trap for each type of atoms. Heregil
54p\2ail /m is the coupling constant for elastic interactio
between atoms of typesi and l, whereail is the correspond-
ing scattering length. The masses of different types of ato
are taken to be equal, as this is necessary while conside
the coupled BEC formed of different spin states
87Rb—one of the most important realizations to date. In t
paper we shall not allow the transition of one type of ato
of the BEC to the other and take the number of atoms of e
component to be constant as in the experiment of Ref.@12#.

Here we shall be interested in the spherically symme
solutionC i(r ,t)[c i(r ,t) to Eq.~2.1!, which can be written
as

F2
\2

2m

1

r

]2

]r 2
r 1

1

2
cimv2r 21(

l 51

M

gil Nl uc l~r ,t!u2

2 i\
]

]tGc i~r ,t!50, . . . ,M . ~2.2!

The above limitation to the spherically symmetric soluti
~in the zero angular momentum state! reduces the coupled
GP equation to a one-dimensional coupled partial differen
equation.

As in Refs. @4,5# it is convenient to use dimensionles
variables defined byx5A2r /aho, and t5tv, where aho
05670
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[A\/(mv), andf i(x,t)5xc i(r ,t)(A2paho
3 )1/2. In terms of

these variables Eq.~2.2! becomes

F2
]2

]x2
1

1

4
cix

21(
l 51

M

nil

uf l~x,t !u2

x2
2 i

]

]tGf i~x,t !50,

~2.3!

wherenil [2A2Nlail /aho is the reduced number of particle
and this number could be negative~positive! when the cor-
responding scattering length is negative~positive!, represent-
ing an attractive~repulsive! interatomic interaction. The nor
malization of the wave function is*0

`uf i(x,t)u2dx51 and its
root-mean-square~rms! radiusxrms

( i ) is given by

xrms
( i ) 5F E

0

`

x2uf i~x,t !u2dxG1/2

. ~2.4!

III. NUMERICAL METHOD

To solve Eq. ~2.3! numerically one needs the prope
boundary conditions atx→0 and`. For a confined conden
sate, for a sufficiently largex, f i(x,t) must vanish asymp-
totically. Hence the nonlinear term proportional touf i(x,t)u3
can eventually be neglected in the GP equation for largx.
Consequently the asymptotic form of the physically acce
able solution is given by limx→`uf i(x,t)u;exp(2x2/4).
Next we consider Eq.~2.3! as x→0. The nonlinear term
approaches a constant in this limit because of the regula
of the wave function atx50. Then one has the conditio
uf i(0,t)u50.

A convenient way to solve Eq.~2.3! numerically is to
discretize it in both space and time and reduce it to a se
algebraic equations, which could then be solved by using
known asymptotic boundary conditions. The procedure
similar to that in the uncoupled case@5#. We discretize Eq.
~2.3! by using a space steph and time stepD with a finite
difference scheme using the unknown (f i)p

k , which will be
approximation of the exact solutionf i(xp ,tk), where xp
5ph and tk5kD. The time derivative in Eq.~2.3! involves
the wave function at timestk and tk11. As in the uncoupled
case we express the wave functions and their derivative
Eq. ~2.3! in terms of the average over timestk andtk11 @15#
and the resultant scheme leads to accurate results and
convergence. In practice we use the following Cran
Nicholson-type scheme@15# to discretize the partial differen
tial equation~2.3!

i
~f i !p

k112~f i !p
k

D
52

1

2h2
@~f i !p11

k1122~f i !p
k111~f i !p21

k11

1~f i !p11
k 22~f i !p

k1~f i !p21
k #

1
1

2 F cixp
2

4
1(

l 51

M

nil

u~f l !p
ku2

xp
2 G

3@~f i !p
k111~f i !p

k#. ~3.1!
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NUMERICAL STUDY OF THE COUPLED TIME- . . . PHYSICAL REVIEW E 63 056704
Considering that the wave-function componentsf i are
known at time tk , Eq. ~3.1! is an equation in the
unknowns—(f i)p11

k11 ,(f i)p
k11, and (f i)p21

k11 . In a lattice ofN
points, Eq. ~3.1! represents a tridiagonal set forp
52,3, . . . ,(N21) for a specific componentf i . This set has
a unique solution if the wave functions at the two end poi
(f i)1

k11 and (f i)N
k11 are known@15#. In the present problem

these values at the end points are provided by the kn
asymptotic conditions.

To find the ground state of the condensate we start w
the analytically known properly normalized wave functio
of the uncoupled harmonic-oscillator problems described
Eq. ~2.3! with nil 50. We then repeatedly propagate the
solutions in time using the Crank-Nicholson-type algorith
~3.1!. Starting withnil 50, at each time step we increase
decrease the nonlinear parameternil by an amountD1. This
procedure is continued until the desired final value ofnil is
reached. The resulting solution is the ground state of
condensate corresponding to the specific nonlinearity.

The time-dependent approach is the most suitable
solving time-evolution problems. In the present paper
consider only evolution problems starting from a stable c
densate att50. In these cases the stationary problem
solved first and the wave function so obtained serves as
starting wave function for the time-evolution problem.

IV. RESULTS FOR THE STATIONARY PROBLEM

First we consider the stationary ground-state solution
Eq. ~2.3! in cases of both attractive and repulsive interactio
using two and four coupled equations. The numerical in
gration was performed up toxmax515 with h50.0001 using
time stepD50.05 and the parameterD150.01. After some
experimentation we find that good convergence is obtai
with parametersD and D1 near these values. The conve
gence is fast for small nonlinearity. The final convergence
the scheme breaks down if nonlinearity is too large. In pr
tice these difficulties start fornii .20 for the ground state fo
a repulsive interaction in a computational analysis in dou
precision. For an attractive interaction the coupled GP eq
tion does not sustain a large nonlinearityunil u and leads to
collapse. Except for values of nonlinearity near collapse,
GP equation in the attractive case leads to good converge

A. Repulsive atomic interaction

In most of the experimental realization of BEC in trapp
atoms, the interatomic interaction is repulsive and we c
sider this case first. We consider the simple case of
coupled GP equations in the case of repulsive interac
with ~a! n115n22510, n125n2155, c151, and c250.25,
~b! n115n2255, n125n215100, c151, andc250.25, and
~c! n115n22510, n125n2155, andc15c251. In this case
all interactions are repulsive corresponding to the posi
sign of all nil [2A2Niail /aho. Although these parameter
are in dimensionless units, it is easy to associate th
to an actual physical problem of experimental intere
For example, for the mixture ofuF51,m521& and
uF52,m51& 87Rb states, the ratio of scattering lengt
05670
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au1,21& /au2,1&51.062@11#. If we label theu1,21& state by 1
and the u2,1& state by 2, and considera11/aho.a22/aho

.0.002, thenn115n22510 corresponds toN1.N2.1770.
This estimate gives an idea of the actual experimental c
dition that the present set of parameters simulate. The th
models considered above can simulate actual experime
situations composed of two states of87Rb. The different val-
ues ofn12 andn21 considered above correspond to differe
possible unknown repulsive interactions among the two s
cies of condensates. It is realized from the coupled GP eq
tion that in case of model~c!, f15f2. We show results for
the two components of the wave function for two sets
values ofD1 :0.01 ~full line! and 0.015~dashed line! in Fig.
1. The difference between the two sets of results increase
the nonlinearity of the GP equation given bynil increases,
e.g., for the case~b! above compared to~a!. The difference
reduces to zero as the nonlinearity decreases.

Next we consider the more complicated case of fo
coupled GP equations with repulsive atomic interaction. T
is a purely theoretical case with no experimental analogue
all experiments to date are limited to two coupled cond
sates only. In this case the numerical method works in
same fashion and good convergence is obtained with mo
ate values of nonlinearity. Again we consider the case
repulsive interaction between all possible pairs. In this ca
in the four-component model, we taken1154, n2255, n33

56, n4458, andnil 52,i 5” l ; c154, c251, c354, andc4
50.25. The solution for the wave-function components o
tained with D50.05 and D150.01 ~full line!, and D1
50.015 ~dashed line!, are shown in Fig. 2. The maximum
difference between the two calculations is about 6% for
largest component (f1) nearx50, although the average dif
ference is much smaller, as can be seen in Fig. 2.

FIG. 1. Wave-function componentsf1 ~label 1! and f2 ~label
2! for two coupled GP equations with~a! n115n22510, n12

5n2155, c151, c250.25; ~b! n115n2255, n125n215100,
c151, c250.25; and~c! n115n22510, n125n2155, c151, and
c251 calculated withD50.05 andD150.01 ~full line!; D50.05
and D150.015 ~dashed line!. In case~c! only the results forD1

50.01 are shown.
4-3
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SADHAN K. ADHIKARI PHYSICAL REVIEW E 63 056704
B. Attractive atomic interaction

The case of attractive atomic interaction demands spe
attention as one can have the phenomenon of collapse in
case. We consider the case of two coupled GP equations
attractive interactions between like atomsi i , i 51,2, and
with repulsive interactions between unlike atomsi j , i 5” j .
In this case some of the atomic interactions are attractiv
nature. Consequently, with large~attractive! nonlinearity, the
system may undergo collapse and for stable stationary s
tion of the GP equation, the nonlinearity should be ma
tained small. We consider the following three cases:~a! n11
521, n22521.5, n125n2154, c154, andc251; ~b! n11
521, n22521.5, n125n21580, c154, and c251; ~c!
n11521, n22521.5, n125n215100, c154, and c251.
The only observed case of BEC with attractive interaction
the case of7Li with a/aho.20.0005 @7#. If we label this
state by 1 thenn11521 corresponds to the actual partic
number N15700. In an uncoupled condensate of7Li the
BEC collapses for more than 1400 atoms. Although there
been no experimental realization of coupled BEC in the c
of attractive interaction, the parameters cited above m
simulate the BEC of ground-state atoms of7Li coupled to
one of its excited states, where the atomic interaction is a
attractive. If we assume that the excited-state atoms have
same value ofa/aho as in the ground state thenn22521.5
corresponds to the number of atomsN251500 in the excited
state where the excited state is labeled by the index 2.

The wave-function components in this case are show
Fig. 3. As for a stable stationary solution the nonlinearity
this case has to be smaller than in the purely repulsive c
numerically it is easier to obtain precise solution except
values of the nonlinearity close to~and beyond! collapse.
The parameters above in cases~a!, ~b!, and~c! are chosen to
illustrate the collapse of the system arising from the div
gence of the first component of the wave function (f1). The

FIG. 2. Wave-function componentsf1 ~label 1!, f2 ~label 2!,
f3 ~label 3!, andf4 ~label 4! for four coupled GP equations with
n1154, n2255, n3356, n4458, and nil 52,i 5” l ; c154, c251,
c354, andc450.25 calculated withD50.05 andD150.01 ~full
line!; D50.05 andD150.015~dashed line!.
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nonlinear couplingsn12 and n21 are increased as we mov
from case~a! to ~b! and then to~c!. Other parameters of the
model are kept fixed. Because of the attractive interaction
this case, the system moves towards collapse as we m
from case~a! to ~c! through ~b!. The central density corre
sponding tof1 increases~eventually tends to infinity! and
the rms radius of the system decreases~eventually tends to
zero! with the increase of nonlinearity. This is clear from
comparison of Fig. 3 with Figs. 1 and 2. The very lar
central value of the wave functionf1 (;35) and its small
radial extension, indicates a large central density and a s
rms radius.

Finally, we consider the case of two interacting syste
with all interactions repulsive. In this case the system is m
vulnerable to collapse if the nonlinearity is large. We co
sider the following three sets of parameters in this case
which we show the solution in Fig. 4:~a! n11521, n225
21, n125n21520.4, c154, and c250.25; ~b! n11521,
n22521, n125n21520.5, c154, andc250.25; ~c! n115
21, n22521, n125n21520.55, c154, and c250.25.
These parameters simulate the possible coupled BEC c
posed of the attractive ground and excited states of7Li,
where the interaction between a ground- and an excited-s
atom is also taken to be attractive. It is possible to calcu
the number of the two types of atoms as in the discuss
related to Fig. 3. Here the nonlinearity increases as we m
from case~a! to ~b! and then to~c!, and consequently, the
wave-function components become more and more local
with a large central density and small rms radii signaling
onset of collapse of the system. This is clear from Fig. 4.
case~c! the nonlinearity is the highest and one is closer
collapse. However, there is a difference between the
collapses shown in Figs. 3 and 4. In Fig. 3 the route
collapse is manifested through a singular behavior of co
ponentf1 of the wave function; in Fig. 4, both componen

FIG. 3. Wave-function componentsf1 ~label 1! and f2 ~label
2! for two coupled GP equations with~a! n11521, n22521.5,
n125n2154, c154, and c251 ~dashed-dotted line!; ~b! n115
21, n22521.5, n125n21580, c154, andc251 ~dashed line!; ~c!
n11521, n22521.5, n125n215100, c154, andc251 ~full line!
calculated withD50.05 andD150.01.
4-4
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NUMERICAL STUDY OF THE COUPLED TIME- . . . PHYSICAL REVIEW E 63 056704
f1 andf2 exhibit the singular behavior. The spacial exte
sion of the wave-function components close to collapse
Figs. 3 and 4 is much smaller than the wave-function co
ponents in the purely repulsive cases shown in Figs. 1 an

C. Estimate of numerical error

It is appropriate to comment quantitatively on the nume
cal accuracy of the present method. If we iterate the fi
solution in time without changing the nonlinearity, the n
merical result keeps on oscillating with a small amplitu
around the converged value. This oscillation gives a go
estimate of the numerical error of the method. This er
manifests in a different way in Fig. 1, where we have var
D1. The numerical solution of the time-dependent method
independent of the space steph provided that a typical value
aroundh50.0001 is employed as in the present paper.
visible difference in the solution is found ifh is increased by
a factor of 2. However, the above oscillations with time
eration are sensitive to the parametersD andD1. The values
of these parameters (D50.05 andD150.01) are chosen to
minimize the oscillation of the results with time iteration
The oscillation increases if larger or smaller values of one

FIG. 4. Wave-function componentsf1 ~label 1! and f2 ~label
2! for two coupled GP equations with~a! n11521, n22521, n12

5n21520.4, c154, andc250.25 ~dashed-dotted line!; ~b! n115
21, n22521, n125n21520.5, c154, and c250.25 ~dashed
line!; ~c! n11521, n22521, n125n21520.55, c154, and c2

50.25 ~full line! calculated withD50.05 andD150.01.
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both of these parameters are employed and can really
large if an improper value of stepD or D1 is chosen. This
oscillation is quite similar to that in the uncoupled case st
ied in detail in Ref.@5#.

From Figs. 1 and 2 we find that the error in the wav
function componentuf i(x,t)/xu as a function ofx is the
largest atx50. In Table I we show the percentage err
of limx→0uf i(x,0)/xu, defined by E[100@ uf i(0,t)u
2uf i(0,0)u#/uf i(0,0)u at those iterations where this error
maximum. For illustration we consider the models~a! dis-
cussed in Figs. 1 and 4. At positiveE there is overshooting
and at negativeE there is undershooting. Between a positi
E and a negativeE there is a zero ofE denoting zero error.
We find that the wave functions oscillate with time arou
the stationary solution. The maximum reported error is ab
6%. Considering that we are dealing with coupled nonlin
equations these errors are well within the acceptable lim
The errors shown in Table I would also be the typical err
in time-evolution problems with the same nonlinearity th
we study in Sec. V. From Table I we see that the period
oscillation of the result varies from one case to anoth
However, the error increases as the nonlinearity increase
as the system approaches collapse in the case of attra
interaction. For example, in models~c! of Figs. 3 and 4,
which are close to collapse corresponding to almost ma
mum permissible nonlinearity, the error increases quic
with time iteration and a large numerical error could be ge
erated easily.

V. RESULTS FOR THE TIME-EVOLUTION PROBLEM

Now we consider three types of time-evolution problem
some of which could possibly be studied experimentally.
the repulsive case leads to more stable configuration of
condensate, in this paper we consider only this case in
process of time evolution. The attractive case of coup
BEC is also very interesting from a physical point of vie
because of the occurrence of collapse. We have perform
study of the dynamics of collapse in coupled BEC using
present numerical method, which will be reported elsewhe
The two types of parameters that can be varied in the tim
evolution study are the frequencies of the harmon
oscillator traps and the different scattering lengths. Recen
it has been possible to vary the scattering length experim
tally by varying an external field@11,12#. It is also possible
to vary the trap frequency by varying the currents in t
83
TABLE I. Percentage errorE[100@ uf i(0,T)u2uf i(0,0)u#/uf i(0,0)u of uf i(0,T)u ( i 51,2) at successive reduced timesT[0.05, where
this error is maximum, calculated withD50.05 andD150.01. The cases considered correspond to model~a! of Figs. 1 and 4.

Fig. 1 T 0 19 42 67 101 125 165 190 225 249 271 311 337 371 395 414 458 4
f1(a) E 0 21.7 2.5 21.0 3.5 21.4 3.2 21.9 2.9 22.7 2.1 23.2 4.0 22.1 4.2 21.8 5.4 23.7
Fig. 1 T 0 36 85 163 219 275 353 395 477
f2(a) E 0 5.4 24.9 6.2 24.2 5.5 24.2 6.2 24.6
Fig. 4 T 0 13 110 192 250 318 376 467
f1(a) E 0 1.2 20.6 1.0 20.5 1.0 20.3 0.9
Fig. 4 T 0 27 113 183 245 323 386 462
f2(a) E 0 3.1 22.7 3.2 22.5 3.2 21.7 3.1
4-5
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FIG. 5. The rms radii of the two componentsf1 ~full line! and f2 ~dashed line! of the wave function at different reduced timesT
[t/0.05 for the oscillating condensate, when on the preformed condensate of model~a! of Fig. 1, we suddenly inflict the following changes
~a! c150.25 andc251; ~b! c15c251; ~c! n115n2255; n215n125100; and~d! c250 calculated withD50.05 andD150.01. All other
parameters are maintained unchanged.
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magnets responsible for confinement@16#.
In the first type of problems we consider a sudden cha

of the harmonic-oscillator frequencies or scattering length
t50 and study its effect on a preformed condensate. In
second type we study the effect of a periodic temporal va
tion of these frequencies on a preformed condensate. Fin
we study the effect of a periodic temporal variation of t
scattering lengths on the preformed condensate. In all c
we take the preformed condensate as the one describe
the model~a! of Fig. 1. We have commented before that t
parameters of this model can simulate the coupled BEC c
posed of the ground and an excited state of87Rb, which
gives a motivation for this choice. When we implement the
time-dependent perturbations, the system starts to osci
~grow and shrink! with time. The corresponding evolutio
can be studied best through the rms radii@7#, which execute
periodic oscillation with time.

A. Sudden change of trap frequency or scattering length

By varying the external fields it is possible to vary th
harmonic-oscillator trap frequency of the confining trap
05670
e
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e
-

ly,

es
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-

e
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s

well as the atomic interactions~scattering lengths! @17#. First
we consider a sudden change of both the trap frequencie
the preformed coupled stationary BEC state correspondin
model ~a! of Fig. 1. We set the reduced timeT[t/0.0550
when we start the time evolution. As the time stepD is 0.05,
T is just the number of iterations. In this model we have tw
different trap frequencies for the two components given
c151 andc250.25. In the first case atT50 we suddenly
interchange the constantsc1 andc2, i.e., we setc150.25 and
c251 and study the time evolution. The evolution of the rm
radii corresponding tof1 and f2 are shown in Fig. 5~a!.
Both rms radii execute oscillations. However, that cor
sponding tof1 has a much larger amplitude. The periods
oscillation of the two radii are different.

Next we consider a sudden change in one of the t
frequencies on the preformed condensate atT50 corre-
sponding to model~a! of Fig. 1 with c151 andc250.25. At
T50, we setc15c251, which corresponds to parameters
model~c! of Fig. 1. The evolution of the rms radii is show
in Fig. 5~b!. Although in the stationary configuration o
4-6
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model~c! of Fig. 1, f15f2, this condition is never attaine
in this evolution problem. The system keeps on oscillat
indefinitely with time. The oscillation shown in Figs. 5~a!
and 5~b! has nothing to do with the nonlinear or couple
nature of the problem. Similar oscillation also appears in
uncoupled linear oscillator when the trap frequency is s
denly changed. In the present coupled nonlinear prob
both rms radii execute oscillations with time. Howeve
when the amplitude of oscillation of one of the compone
increases, that of the other decreases. This behavior de
the transfer of kinetic energy from one component to
other.

Now we study the effect of a sudden change of the s
tering length~s! on the preformed condensate@17#. We con-
sider the problem when the parameters of model~a! of Fig. 1
are suddenly changed to those of model~b! of Fig. 1 at T
50. This is achieved by changing the nonlinearities s
denly at T50 from n115n22510,n125n2155 to n115n22
55,n125n215100 with a variation of the external field tha
controls the scattering length~s!. In this case the oscillation
of the system are shown in Fig. 5~c!, where we plot the time
evolution of the rms radii of the two components. Both co
ponents of the condensate execute oscillations but with
ferent frequencies and amplitudes. One of the compon
execute giant oscillations with large amplitude, whereas
amplitude of the other is much smaller.

Finally, we consider the case when one of the trapp
potentials is switched off atT50 on the preformed conden
sate of Fig. 1, model~a! by settingc250. The oscillation in
this case is shown in Fig. 5~d!, where we plot the two rms
radii. In the absence of the trapping potential the sec
component of the condensate can no longer remain local
in space. However, it does not expand monotonically bef
evaporating. It starts to execute giant oscillation and eve
ally escapes to infinity. Similar oscillation was found in th
case of an uncoupled BEC when the trapping potential
removed@5#. The first component essentially remains u
changed during the process under the action of the
changed trap potential. The minor oscillation of the rms ra
of the first component is due to the coupling to the expand
second component.

B. Periodic oscillation of trap frequency

Instead of making a sudden change in the parameter
the model, next we introduce periodic oscillation in some
the parameters of the model forT>0 and study the conse
quence on the system. We introduce a periodic variation
the parametersci , which are related to the harmonic
oscillator trap frequencies. Experimentally, this variation
possible via a variation of the external fields, which are c
trolled by currents.

We again consider atT50 the preformed condensate
the model~a! of Fig. 1. First we consider the variationc1
5120.5 sin(pT/20), which corresponds to varying the fre
quency of the first trap. The resultant variation of the tw
rms radii are shown in Fig. 6. The first radius~full line!
oscillates more rapidly with larger amplitude and frequen
than the second radius~dashed line!. This is reasonable as w
05670
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are directly varying the first frequency in this case. The r
radius of the second wave function feels the effect throu
its coupling to the first component. We also varied both
parametersc1 and c2 in a periodic fashion, which corre
sponds to varying both the frequencies. In this case both
rms radii execute oscillation. However, no interesting eff
is observed and we do not show the details of that oscilla
here.

C. Periodic oscillation of scattering length

Now we study the effect of a periodic variation of th
scattering length~s! of the system on a preformed condensa
In our formulation this corresponds to a periodic variation
the parametersnil . This variation of the atomic interaction
or the scattering lengths is now feasible experimentally@17#.
We consider the periodic variation in one of the scatter
lengths (a11) by settingn115120.5 sin(pT/20) for T>0 on
the preformed condensate of model~a! of Fig. 1. The result-
ant oscillation of the rms radii are shown in Fig. 7. Th
variation corresponds to a variation of the atomic interact
among atomic states of the first type. Consequently, the
radii of the first component of the BEC executes pronoun
oscillation with moderate amplitude. There is no direct var
tion in the parameters of the second component. The sec
component of the condensate feels the effect of variation
n11 through the coupling to the first component. Because
this secondary effect the second component also exec
oscillation as can be seen from its rms radii in Fig. 7, alb
with a much smaller amplitude compared to the first com
nent.

We also considered a periodic variation of the scatter
length between one atom of each type (a125a21) by setting
n125n2150.520.25 sin(pT/20) on the same preformed con
densate forT>0 and studied the resultant oscillation of th

FIG. 6. The rms radii of the two componentsf1 ~full line! and
f2 ~dashed line! of the wave function at different reduced time
T[t/0.05 for the oscillating condensate, when on the preform
condensate of model~a! of Fig. 1, we suddenly inflict the following
change:c15120.5 sin(pT/20) calculated withD50.05 andD1

50.01. All other parameters are maintained unchanged.
4-7
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rms radii. However, no interesting behavior was obser
and we do not show details of that oscillation.

VI. SUMMARY

In this paper we present a numerical study of the coup
time-dependent Gross-Pitaevskii equation for BEC in th
space dimensions under the action of harmonic-oscilla
trap potentials with attractive and repulsive interparticle
teractions between different types of atoms@13#.

The time-dependent coupled GP equation is solved
discretizing it using a Crank-Nicholson-type scheme@5,15#.

FIG. 7. The rms radii of the two componentsf1 ~full line! and
f2 ~dashed line! of the wave function at different reduced time
T[t/0.05 for the oscillating condensate, when on the preform
condensate of model~a! of Fig. 1, we suddenly inflict the following
change:n115120.5 sin(pT/20) calculated withD50.05 andD1

50.01. All other parameters are maintained unchanged.
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This method leads to good convergence for small nonline
ity. Numerical difficulty appears for large nonlinearity (nil
.20). For medium nonlinearity, the accuracy of the meth
can be increased by reducing the space steph.

The ground-state stationary wave functions are found
be sharply peaked near the origin for attractive interatom
interaction for larger nonlinearity~Fig. 4!. For a repulsive
interatomic interaction the wave function extends over
larger region of space~Figs. 1 and 2!. In the case of an
attractive potential, the rms radii decrease with an increas
nonlinearity. There could be a collapse for attractive inter
tion when the nonlinear parametersnil are increased as in th
uncoupled case@8#. In the purely repulsive case we solve
two and four coupled GP equations. In problems involvi
attraction we solved only the two coupled GP equations.

In addition to the stationary problem we studied thr
types of evolution problems. A stable coupled condensat
considered atT50 on which a time-dependent perturbatio
is introduced. Two types of perturbations were considered
a two-component condensate with purely repulsive inter
tions. In the first type a sudden change in the parame
related to the frequencies of the trap and the scatte
lengths was introduced. In the second type a periodic va
tion of the different scattering lengths and the frequencies
the harmonic-oscillator trap was introduced. In all cases
condensates execute periodic oscillation, which is studied
the time evolution of the rms radii as in the uncoupled ca
@7#. We conclude that the present time-dependent approa
very suitable for studying both the stationary and tim
evolution problems of a coupled BEC.
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